Les hommes ont oublié cette vérité. Mais tu ne dois pas l'oublier, dit le renard. Tu deviens responsable pour toujours de ce que tu as apprivoisé.
Le Petit Prince, chap. 21

Friday, 19 May 2017

New insights into the genetic composition and phylogenetic relationship of wolves and dogs in the Iberian Peninsula

Pires, A. E., Amorim, I. R., Borges, C., Simões, F., Teixeira, T., Quaresma, A., ... & Matos, J. (2017). New insights into the genetic composition and phylogenetic relationship of wolves and dogs in the Iberian Peninsula. Ecology and Evolution.

This study investigates the gene pool of Portuguese autochthonous dog breeds and their wild counterpart, the Iberian wolf subspecies (Canis lupus signatus), using standard molecular markers. A combination of paternal and maternal molecular markers was used to investigate the genetic composition, genetic differentiation and genetic relationship of native Portuguese dogs and the Iberian wolf. A total of 196 unrelated dogs, including breed and village dogs from Portugal, and other dogs from Spain and North Africa, and 56 Iberian wolves (wild and captive) were analyzed for nuclear markers, namely Y chromosome SNPs, Y chromosome STR loci, autosomal STR loci, and a mitochondrial fragment of the control region I. Our data reveal new variants for the molecular markers and confirm significant genetic differentiation between Iberian wolf and native domestic dogs from Portugal. Based on our sampling, no signs of recent introgression between the two subspecies were detected. Y chromosome data do not reveal genetic differentiation among the analyzed dog breeds, suggesting they share the same patrilineal origin. Moreover, the genetic distinctiveness of the Iberian wolf from other wolf populations is further confirmed with the description of new mtDNA variants for this endemism. Our research also discloses new molecular markers for wolf and dog subspecies assignment, which might become particularly relevant in the case of forensic or noninvasive genetic studies. The Iberian wolf represents a relic of the once widespread wolf population in Europe and our study reveals that it is a reservoir of unique genetic diversity of the grey wolf, Canis lupus. These results stress the need for conservation plans that will guarantee the sustainability of this threatened top predator in Iberia.

Integrating social ecology in explanations of wolf–dog behavioral differences

Marshall-Pescini, S., Cafazzo, S., Virányi, Z., & Range, F. (2017). Integrating social ecology in explanations of wolf–dog behavioral differences. Current Opinion in Behavioral Sciences, 16, 80-86.

Highlights
• Wolf–dog differences have been explained as a result of human selection for desirable behaviours.
• But wolves and dogs also have different feeding ecologies and social organizations.
• Wolves rely on pack members for group hunting and pup-rearing.
• Dogs mostly forage alone on human refuse and show little allomaternal care.
• Social ecology helps explain observed wolf–dog differences in comparative studies.

Whereas studies in comparative cognition normally invoke ecology and social organization to account for differences in social behaviour and cognition across species, dog–wolf differences have so far been explained mostly as a result of direct human selection for desirable traits (e.g., tameness, attention to humans, sociability). Yet, as will be reviewed in this paper, dogs and wolves also differ considerably in both their feeding niche and social organization (which together we refer to as ‘social ecology’). We suggest that observed wolf–dog differences especially in their interaction with the environment (e.g., neophobia, persistence, risk taking) and conspecifics (e.g., tolerance, cooperation, communication) need to be considered also in regard to their social ecology. We propose that social ecology alongside human selection should be recognized as a potentially important factor affecting dogs’ behaviour, and suggest a number of potential avenues for future research, which can more directly test the relative importance of these selection forces.

Changes in the feeding ecology and social organization from wolves to dogs and how these may affect their behaviour towards conspecifics and the environment.


Thursday, 18 May 2017

A Dogged problem for Wildlife?

Prospects for domestic and feral cat management on an inhabited tropical island

Dias, R. A., Abrahão, C. R., Micheletti, T., Mangini, P. R., de Oliveira Gasparotto, V. P., de Jesus Pena, H. F., ... & Silva, J. C. R. 2017. Prospects for domestic and feral cat management on an inhabited tropical island. Biological Invasions, 1-15.

Cat management campaigns have been implemented on several islands worldwide. However, few successful campaigns have occurred on permanently inhabited islands. Cats are known for causing severe impacts on the native insular fauna, posing an important threat to biodiversity. Moreover, this species is also responsible for zoonosis maintenance and transmission. A thorough understanding of cat population structure (e.g., supervised vs. unsupervised) is strongly suggested as a management action on inhabited islands, as it might promote more efficient and effective management of this species. Fernando de Noronha is an archipelago in the tropical Atlantic Ocean. The total cat population on the main island was estimated at 1287 animals, most of them supervised and subsidized around inhabited areas. Free-roaming cats currently threaten the endemic terrestrial fauna of Fernando de Noronha, and the cat density found by the present work is among the highest ever recorded on an island. Using population dynamic simulations, the long-term effects of reproduction control and removal of cats from the archipelago were assessed. Removal of cats was also suggested as a necessary management strategy to achieve negative population growth. In addition, it was more cost-effective than reproduction control. However, applying both removal and sterilization strategies to this population resulted in a higher population decrease than removal alone. For these reasons, a combination of reproductive control and cat eradication should be implemented in Fernando de Noronha.

Tuesday, 2 May 2017

Domestic dogs threaten endangered species worldwide


Humans and their canine companions share many close bonds. Wolves (Canis lupus) were the first animal domesticated by people, some time between 15,000 and 50,000 years ago. 

There are now an estimated 1 billion domestic dogs across their near-global distribution.





Continue reading ...


Monday, 9 January 2017

Impacts of introduced mammalian predators on New Zealand’s alpine fauna

O’Donnell, C. F., Weston, K. A., & Monks, J. M. (2017). Impacts of introduced mammalian predators on New Zealand’s alpine fauna. New Zealand Journal of Ecology, 41(1), 01-22.

Alpine zones are threatened globally by invasive species, hunting, and habitat loss caused by fire, anthropogenic development and climate change. These global threats are pertinent in New Zealand, with the least understood pressure being the potential impacts of introduced mammalian predators, the focus of this review. In New Zealand, alpine zones include an extensive suite of cold climate ecosystems covering c. 11% of the land mass. They support rich communities of indigenous invertebrates, lizards, fish, and birds. Many taxa are obligate alpine dwellers, though there is uncertainty about the extent to which distributions of some species are relicts of wider historical ranges. The impacts of introduced mammalian predators are well described in many New Zealand ecosystems, though little is known about the impacts of these predators on alpine fauna. Here we review the importance of alpine habitats for indigenous fauna and the impacts of introduced mammalian predators; and develop a conceptual model explaining threat interactions. Most evidence for predation is anecdotal or comes from studies of species with wider ranges and at lower altitudes. Nevertheless, at least ten introduced predator species have been confirmed as frequent predators of native alpine species, particularly among birds and invertebrates. In the case of the endangered takahe (Porphyrio hochstetteri) and rock wren (Xenicus gilviventris), stoats (Mustela erminea) are primary predators, which are likely to be impacting significantly on population viability. We also document records of mammalian predation on alpine lizards and freshwater fish. While the precise impacts on the long-term viability of threatened species have not been evaluated, anecdotal evidence suggests that predation by mammals is a serious threat, warranting predator control. Future research should focus on predicting when and where mammalian predators impact on populations of indigenous fauna, furthering our understanding of the alpine predator guild particularly through adaptive management experiments, and exploring interactions with other threats.

Sunday, 8 January 2017

First population assessment of the black forest cat in Madagascar's rainforests


Farris, Z. J., Boone, H. M., Karpanty, S., Murphy, A., Ratelolahy, F., Andrianjakarivelo, V., & Kelly, M. J. (2016). Feral cats and the fitoaty: first population assessment of the black forest cat in Madagascar’s rainforests. Journal of Mammalogy, 97(2), 518-525.

Despite exceptionally high levels of biodiversity and endemism found in Madagascar, much of its wildlife remains little studied, particularly the carnivore community. The recently described, little-known black forest cat (locally known as “fitoaty”) is believed to be restricted to NE Madagascar and has been investigated only through village surveys and anecdotal accounts. From 2008 to 2012, we photographically sampled 7 forest sites with varying degrees of degradation and fragmentation across Makira Natural Park with the goals of: 1) estimating landscape occupancy for fitoaty (Felis spp.), 2) identifying variables influencing fitoaty occupancy, and 3) comparing fitoaty and feral cat (Felis spp.) occupancy across the landscape. We observed higher occupancy for fitoaty, minimal co-occurrence between fitoaty and feral cats (n = 2 sites), and strong divergence in habitat use. We provide the 1st assessment of fitoaty morphology, including comparisons with anecdotal reports, and the 1st population assessment of Madagascar’s exotic cat community with insights into factors associated with carnivore population trends in Madagascar. We suggest the described fitoaty is a phenotypically different form of the feral cat, but additional research is needed. Targeted management plans are needed to diminish the spread and potential negative effects of invasive cats across this important biologically diverse ecoregion.
Change in the probability of occupancy for fitoaty (black) and Felis spp. (gray) in response to: a) small mammal trap success and b)  distance to village (km). Photographic sampling was conducted across the Masoala-Makira landscape from 2008 to 2012

Feral cats driving the regional extinction of a threatened rodent in northern Australia

Davies, H. F., McCarthy, M. A., Firth, R. S., Woinarski, J. C., Gillespie, G. R., Andersen, A. N., ... & Murphy, B. P. (2016). Top‐down control of species distributions: feral cats driving the regional extinction of a threatened rodent in northern Australia. Diversity and Distributions.

Aim

To investigate whether feral cats influence the distribution of Australia's largest remnant population of the threatened brush-tailed rabbit-rat Conilurus penicillatus and examine whether they influenced the extinction probability of C. penicillatus over a 15-year period (2000–2015).

Location

Melville Island, northern Australia.

Methods

In 2015, small mammal surveys were conducted at 88 sites across Melville Island, 86 of which had previously been surveyed in 2000–2002. We used single-season occupancy models to investigate correlates of the current distribution of C. penicillatus and dynamic occupancy models to investigate correlates of C. penicillatus local extinction.

Results

Our results show that C. penicillatus, which once occurred more widely across the island, is now restricted to parts of the island where feral cats are rarely detected and shrub density is high. Our results suggest that feral cats are driving C. penicillatus towards extinction on Melville Island, and hence have likely been a significant driver in the decline of this species in northern Australia more broadly. The impact of feral cats appears to be mitigated by vegetation structure.

Main conclusions

The ongoing development and implementation of methods to effectively reduce feral cat densities, coupled with the management of landscape processes to maintain shrub density, through fire management and the removal of large exotic herbivores, will contribute substantially to conserving this threatened species. This study demonstrates that the distribution of species can be strongly influenced by top-down factors such as predation, thereby highlighting the importance of including biotic interactions when investigating the distribution of predation-susceptible species.


Saturday, 7 January 2017

Impact of a 3-year pet management program on pet population and owner’s perception

Costa, E. D., Martins, C. M., Cunha, G. R., Catapan, D. C., Ferreira, F., Oliveira, S. T., ... & Biondo, A. W. (2017). Impact of a 3-year pet management program on pet population and owner’s perception. Preventive Veterinary Medicine.

Although pet population management programs have been established worldwide, few reports on program evaluation have been carried out to date. Accordingly, a 3-year longitudinal study has been carried out in a 4,000 household neighborhood located within the metropolitan area of Curitiba, the eighth most populated city of Brazil. Visits were conducted and questionnaires completed to estimate and characterize the local pet population (animal sex, reproductive and vaccination status, street access). Care provided by owners, community perception on stray dog management and the possible changes were compared in these variables over time (2010 and 2013) were evaluated, after the establishment of a city pet population management program. In addition, associations between having children, owning dogs and cats, responsible pet ownership education and owner’s perception on stray dogs were statistically tested. A total of 354/4,000 (8.9%) household families were interviewed in 2010 and 70/354 (19.8%) of the same families again in 2013. No significant changes were found in overall number of dogs and cats and average pet age, animal care and owner’s perception on stray dogs following the 3-year population management program. In 2010, an average of 1.6 dogs and 0.3 cats were found per family, with slightly more females (51.3% dogs and 51.1% cats), adults (4.0 ± 3.5 years for dogs and 2.1 ± 2.4 for cats), intact (not neutered; 94.2% dogs and 84.0% cats) and lacking regular visit to veterinarian (71.6%). Although more families (53.1%) had children under 12 years old, no association was found between having children and having dogs and cats. Questionnaires revealed that owners perceived neutering/spaying to be the best pet population control method (42.4%), with “society” (50%) and “government” (49.4%) as responsible for pet population management. A significant positive association has been found between education level and the best way to control stray dogs (p = 0.03), between having dogs and in favor of neutering/spaying (p = 0.04) and considering neutering/spaying as the best control method (p = 0.02). The chances of thinking the best way to control stray dogs by neutering/spaying and adoption were almost 2.0 fold higher than other methods. In conclusion, the present study has provided indicators (education level, having dogs) for pet population control program assessment and effectiveness evaluation. Moreover, this study may serve as a warning on the real long-term effect of such programs, which should be periodically evaluated to identify necessary adjustments and/or improvements.

Thursday, 5 January 2017

Interactions between invasive predators, native mammals and fire in a forest ecosystem

Hradsky, B. A. K. (2016). Interactions between invasive predators, native mammals and fire in a forest ecosystem (Doctoral dissertation, University of Melbourne).

A predator’s impact upon its prey depends not only on the evolutionary history and intrinsic characteristics of the two species, but also on the structure of the environment in which they interact. Fire is a major driver of vegetation structure, and there is growing concern that fire could increase the threat that invasive predators pose to native fauna. In this thesis, I investigated the interactions between fire, two invasive predators (red foxes Vulpes vulpes and feral cats Felis catus), and a suite of native mammal species. I used four different approaches to examine this problem within a fire-prone forest ecosystem of south-eastern Australia.


At a landscape-scale, species distributions are often poorly predicted by time-since-fire. I developed a conceptual model of the potential interactions between fire and other drivers of faunal occurrence (including predation), and then used non-parametric Bayesian networks to quantify these relationships for terrestrial native mammals. I found that critical-weight-range mammals were more likely to occur at long unburnt sites with high habitat complexity, and in wetter forest types. In contrast, large macropods preferred less complex habitats and younger or drier forest. Species distributions were generally more strongly associated with habitat complexity than time-since-fire or invasive predator occurrence. Yet, because Bayesian networks captured the relationships between proximal and distal drivers, models could effectively predict the distributions of most species using only mapped and remote-sensed data.

At a finer-scale, I used a before-after control-impact experiment to investigate the short-term effects of a prescribed fire on understorey vegetation cover, native mammal occurrence, and invasive predator occurrence and diet. Associations between species occurrences and vegetation cover in unburnt forest indicated that fire was likely to promote invasive predators but disadvantage small- and medium-sized native mammals. After the fire, there was a five-fold increase in invasive predator occurrence at burnt sites, relative to the control. Concurrently, red foxes increased their consumption of medium-sized native mammals, and selected more strongly for long-nosed bandicoots Perameles nasuta and short-beaked echidnas Tachyglossus aculeatus. The occurrence of several native mammals declined after the fire, but it was difficult to distinguish the effects of the fire from seasonal variation.

I used GPS-tracking collars to investigate whether forest-dwelling red foxes selected for human-modified habitats (including recently-burnt forest). There was substantial variation in fox behaviour, highlighting the importance of considering individual variation in habitat selection studies. At a broad-scale, however, red fox habitat selection tended to vary with proximity to the forest edge. Most foxes selected for human-modified habitats such as reservoirs, roads and forest-farmland edges in their fine-scale movements, particularly at night. Two foxes whose home-ranges overlapped a burn-block intensified their use of the block immediately after fire. Yet other nearby foxes showed little response, suggesting that fire responses are highly localised.

Finally, I used an agent-based simulation model to explore how changes in vegetation cover and predator abundance after fire could affect a critical-weight-range mammal. The model confirmed that fire and predation can have synergistically negative impacts on native mammal populations in burnt forest, and that local access to unburnt refuges substantially reduces these effects.

Invasive predators are highly opportunistic, wide-ranging and thoroughly integrated into this flammable forest ecosystem. Lethal control programs for foxes need to consider fox movement across land-tenures, and could selectively target habitat features such as roadsides, forest-farmland edges and recently-burnt forest. Habitat-based management approaches might also reduce invasive predator impacts on native mammals, for example by preserving dense vegetation in unburnt refuges, or removing anthropogenic resources that subsidise predator populations within forests. Evidence-based, integrated management of threatening processes is vital to conserving native biodiversity.

Sunday, 1 January 2017

Exotics replace native carnivores in Madagascar rainforest

Farris, Z. J., Kelly, M. J., Karpanty, S., Murphy, A., Ratelolahy, F., Andrianjakarivelo, V., & Holmes, C. (2016). The times they are a changin': Multi-year surveys reveal exotics replace native carnivores at a Madagascar rainforest site. Biological Conservation.

Surveys across multiple seasons or years are necessary to evaluate the effects of dynamic processes on long-term persistence of wildlife populations, such as effects of exotic species on native species populations. Unfortunately, multi-year surveys are rare, particularly for rainforest carnivore populations, and managers often rely on single-season/year, ‘snapshot’ surveys that produce static estimates of population parameters. Here we provide results using single-species, multi-year occupancy modeling from a six-year survey (2008–2013) of a rainforest carnivore community at a 15 km2 area study site within the newly established Makira Natural Park, Madagascar. We demonstrate a precipitous decline in the native carnivore community with four of the six native carnivores (falanouc Eupleres goudotii, ring-tailed vontsira Galidia elegans, broad-striped vontsira Galidictis fasciata, and brown-tailed vontsira Salanoia concolor) decreasing by at least 60% over this six-year period. In addition, we observed two exotic carnivores (small Indian civet Viverricula indica and feral cat Felis species) colonize this study site with Felis species increasing in occupancy from 0 to 0.68 by the final year. Further, we demonstrate how variables associated with human encroachment (i.e. distance to forest edge and nearest village) are most important for explaining these trends in native carnivore extirpation and exotic carnivore colonization. These findings provide additional evidence on the threat posed to native carnivore populations by the expansion of exotic carnivores worldwide. We highlight the striking increase in extirpation, and the factors influencing such changes, for native carnivores. In this manuscript, we point to the limited number of multi-year surveys to evaluate dynamic processes on long-term persistence of native wildlife populations, as well as the lack of exotic carnivore control programs in threatened ecosystems in many developing nations as factors limiting our ability to effectively conserve biodiversity across the globe.
 Line graph demonstratingthe multi-year trendsin occupancy for A) four native carnivoresand B) two exotic carnivores. Photographic surveyswere conductedfrom 2008 to 2013 at a newly established study site within the Makira Natural Park, Madagascar.


How many feral cats are in Australia?

Legge, S., Murphy, B. P., McGregor, H., Woinarski, J. C. Z., Augusteyn, J., Ballard, G., ... & Edwards, G. (2016). Enumerating a continental-scale threat: How many feral cats are in Australia?. Biological Conservation.

Feral cats (Felis catus) have devastated wildlife globally. In Australia, feral cats are implicated in most recent mammal extinctions and continue to threaten native species. Cat control is a high-profile priority for Australian policy, research and management. To develop the evidence-base to support this priority, we first review information on cat presence/absence on Australian islands and mainland cat-proof exclosures, finding that cats occur across >99.8% of Australia's land area. Next, we collate 91 site-based feral cat density estimates in Australia and examine the influence of environmental and geographic influences on density. We extrapolate from this analysis to estimate that the feral cat population in natural environments fluctuates between 1.4 million (95% confidence interval: 1.0–2.3 million) after continent-wide droughts, to 5.6 million (95% CI: 2.5–11 million) after extensive wet periods. We estimate another 0.7 million feral cats occur in Australia's highly modified environments (urban areas, rubbish dumps, intensive farms). Feral cat densities are higher on small islands than the mainland, but similar inside and outside conservation land. Mainland cats reach highest densities in arid/semi-arid areas after wet periods. Regional variation in cat densities corresponds closely with attrition rates for native mammal fauna. The overall population estimate for Australia's feral cats (in natural and highly modified environments), fluctuating between 2.1 and 6.3 million, is lower than previous estimates, and Australian feral cat densities are lower than reported for North America and Europe. Nevertheless, cats inflict severe impacts on Australian fauna, reflecting the sensitivity of Australia's native species to cats and reinforcing that policy, research and management to reduce their impacts is critical.
The population size of feral cats in natural environments in Australia fluctuates between 1.4 and 5.6 million, depending on rainfall. An additional 0.7 million feral cats live in heavily modified environments like towns and intensive farms. The maps show the model predictions for cat density in natural environments across Australia during dry-average rainfall conditions (on the left) and after extensive rainfall events (on the right). They show that cat density is fairly uniform across the continent during average-dry conditions, but extensive rainfall events cause an increase in feral cat density in the inland of Australia. As predictors, the regression model includes mean annual rainfall, mean annual temperature, tree cover, ruggedness and fox presence/absence. For islands smaller than Tasmania, island area was also included as a predictor of density (small islands have higher cat densities). The dashed lines indicate the Tropic of Capricorn.

Thursday, 29 December 2016

Research, conservation and urban cat management in NZ

Kikillus, K. H., Chambers, G. K., Farnworth, M. J., & Hare, K. M. 2106. Research challenges and conservation implications for urban cat management in New Zealand. Pacific Conservation Biology.

Over the past 20 years, conservation efforts in New Zealand have moved from being concentrated in rural and isolated island locations, where exotic mammalian predators are often controlled, to begin to bring native fauna back to major cities. However, human–wildlife conflicts arise when conservation occurs in close proximity to cities. These are particularly intense when companion animals are involved either as potential predators or prey of high-value conservation animals. Within New Zealand, this conflict is particularly fraught around domestic cats (Felis catus) in the urban environment. Cats in New Zealand are recognised as major introduced predators of native fauna, but they also prey on small introduced predatory mammals. This dynamic causes much conflict between people with different attitudes towards animals; however, as yet, few studies have explored the role(s), either negative or positive, of urban cats in New Zealand. Here, we review current knowledge on domestic cats in urban New Zealand, identify gaps in knowledge and make suggestions for future research, which includes further social science research, citizen science-based research programs, market research, investigation into cat-management legislation, and more in-depth studies of cat diseases and zoonoses. These data are vital for informing the public and improving the management of urban cat populations, including mitigating conservation impacts. Urban ecologists will need to be versatile in the way they design and conduct experiments, exploiting multiple disciplines to both ensure scientific robustness, but also community and government support for uptake of results into management and legislation.

Sunday, 4 September 2016

Proposed management plan for cats and black rats on Christmas Island.


Algar, D., & Johnston, M. (2010). Proposed management plan for cats and black rats on Christmas Island. Government of Western Australia Department of Environment and Conservation.


Proposed management plan for cats and black rats on Christmas Island 1Report outline The impact of cats on the biodiversity of Christmas Island is of concern to land management agencies and the broader  community.  Domestic  and  stray  cats  reside  in  the  residential,  commercial  and  light industrial  area while a population of feral cats exists across the rest of the island (i.e. mining lease, national park and other  Crown  land).  Concern  has  been  raised  regarding  the  threat  that  all ‘classes’  of  cats  present  to  the  viability  of  a  number  of  endangered  fauna  populations. Additionally,  previous  research  has  demonstrated  that  the  cats  on  the  island  also  have  a  very high  prevalence  of  Toxoplasmosis, a  parasite  that  can  lead  to  serious  human  health complications.The  management  of  cats  on  the  island  is  a  complex  task  as reduction/eradication in cat numbers alone could lead to changes in the abundance of other exotic species populations, especially  the  introduced  black  rat  which  then  may  threaten  wildlife  species  and  also  have disease implications.  
Land  management  agencies  on  Christmas  Island  have  commissioned  this report  which  describes  the  rationale and development of a long-term cat and black rat management and eradication plan to mitigate the environmental  and  social  impacts  of  cats  and  black  rats across  all  land  tenures  (shire-managed  lands,  Crown land including mine leases and Christmas Island National Park).   
The  report  provides  a  background  to  the  threats  and  impacts  of  cats and  black  rats  on  the  island’s  natural  and  social  environment,  including  wildlife  predation  and disease  threats  to  wildlife  and  human  health.  It  documents  previous  reports  in  relation  to impact  and  management  of  cats  and  black  rats  on  Christmas  Island.  The  current  local  cat management  laws  (Shire  of  Christmas  Island  Local  Law  for  the  Keeping  and  Control of Cats 2004) under the Local Government Act 1995 (WA) (CI) are evaluated (see Appendix 1) with the aim of limiting domestic and stray cat impact on the iconic native fauna of Christmas Island, promoting responsible cat ownership, compliance and enforcement of cat management laws and measures required to implement a ‘last cat policy’ for the Island.  
Cat  and  rodent  eradication  programs  and strategies  developed  and/or  implemented  by other conservation  agencies and local governments, particularly for islands are evaluated for their utility on Christmas Island. A strategy  is recommended that  provides  a staged approach  to  cat  and black  rat  management and  control  leading to eradication of one or both target species. Techniques, actions and priorities are described as are recommendations   of   where   additional   research   is   required.   A   monitoring   program   to   measure   the   effectiveness  of  the  strategy  is  reported which  enables  investigation  of  the potential  relationships  between  cats  and  their  invasive species  prey,  including  rodents  and centipedes,  and  strategies  to  address  any  negative environmental or social impacts of cat control. Monitoring requirements to maintain a cat and black rat free status including quarantine requirements to prevent, detect and quickly manage, new incursions are also discussed. 
Timelines and resource requirements to undertake this program are provided in Appendix 2. 

Saturday, 27 August 2016

Feral cats overlap with prey and competitors in primary and altered habitats

Bogdan, V., Jůnek, T., & Vymyslická, P. J. (2016). Temporal overlaps of feral cats with prey and competitors in primary and human-altered habitats on Bohol Island, Philippines. PeerJ, 4, e2288.

The vertebrate fauna of the Philippines, known for its diversity and high proportion of endemic species, comprises mainly small- to medium-sized forms with a few large exceptions. As with other tropical ecosystems, the major threats to wildlife are habitat loss, hunting and invasive species, of which the feral cat (Felis catus) is considered the most damaging. Our camera-trapping study focused on a terrestrial vertebrate species inventory on Bohol Island and tempo-spatial co-occurrences of feral cats with their prey and competitors. The survey took place in the Rajah Sikatuna Protected Landscape, and we examined the primary rainforest, its border with agricultural land, and rural areas in the vicinity of villages. Altogether, over 2,885 trap days we captured 30 species of vertebrates–10 mammals (including Sus philippensis), 19 birds and one reptile, Varanus cumingi. We trapped 81.8% of expected vertebrates. Based on the number of events, the most frequent native species was the barred rail (Gallirallus torquatus). The highest overlap in diel activity between cats and potential prey was recorded with rodents in rural areas (Δ = 0.62); the lowest was in the same habitat with ground-dwelling birds (Δ = 0.40). Cat activity was not recorded inside the rainforest; in other habitats their diel activity pattern differed. The cats’ activity declined in daylight in the proximity of humans, while it peaked at the transition zone between rainforest and fields. Both rodents and ground-dwelling birds exhibited a shift in activity levels between sites where cats were present or absent. Rodents tend to become active by day in cat-free habitats. No cats’ temporal response to co-occurrences of civets (Paradoxurus hermaphroditus and Viverra tangalunga) was found but cats in diel activity avoided domestic dogs (Canis lupus familiaris). Our first insight into the ecology of this invasive predator in the Philippines revealed an avoidance of homogeneous primary rainforest and a tendency to forage close to human settlements in heterogeneous habitats. A detailed further investigation of the composition of the cat’s diet, as well as ranging pattern, is still needed.
Related Posts Plugin for WordPress, Blogger...