Les hommes ont oublié cette vérité. Mais tu ne dois pas l'oublier, dit le renard. Tu deviens responsable pour toujours de ce que tu as apprivoisé.
Le Petit Prince, chap. 21

Wednesday 8 January 2014

Cat hybridization in Germany

Krüger, M., Hertwig, S. T., Jetschke, G., & Fischer, M. S. (2009). Evaluation of anatomical characters and the question of hybridization with domestic cats in the wildcat population of Thuringia, Germany. Journal of Zoological Systematics and Evolutionary Research, 47(3), 268-282.

Germany’s large population of wildcats (Felis silvestris silvestris) can be clearly distinguished from domestic cats on the basis of morphological characters. However, an examination of 71 specimens from Thuringia also illustrates the risks involved in using only a few such characters. The most reliable tool for identification in the field are three pelage characters (distinctness of tail bands, stripes on the nape and stripes on the shoulder). Only two morphological characters (intestine length and cranial volume) are unambiguous and demonstrate no overlap in distribution between domestic cats and wildcats. A linear discriminant analysis with forward selection of variables showed that only five skull variables are necessary to distinguish all four groups (subspecies × sex). Additionally, the high degree of correlation between most of the 49 variables examined (as indicated by Pearson’s r correlation matrix) speaks against the utility of measuring such high numbers of characters in the future. Principal component analysis (PCA) enabled the subspecies to be separated clearly. The first PCA axis was highly correlated with variables characterizing overall body size, thus separating male and female into wildcats and domestic cats. Even when the chief differentiating characters are missing, the PCA still resulted in a good separation of subspecies. None of the genetically determined hybrids could have been deciphered unambiguously using the morphological characters still intact after a road death. Hybridization seems to occur whenever wildcats change their ecological function and become field cats. The impulse to hybridize seems to come much more from the wildcat side than the side of feral cats, and deforestation represents the major threat to the wildcat.



Hertwig, S. T., Schweizer, M., Stepanow, S., Jungnickel, A., Böhle, U. R., & Fischer, M. S. (2009). Regionally high rates of hybridization and introgression in German wildcat populations (Felis silvestris, Carnivora, Felidae). Journal of Zoological Systematics and Evolutionary Research, 47(3), 283-297.

While the western populations of the wildcat (Felis silvestris silvestris) in Germany come into contact with wildcats in France and Switzerland, the eastern distribution area is geographically completely isolated and consists of scattered subpopulations. To investigate population structure, evolutionary relationships and degree of hybridization with domestic cats we analysed the mitochondrial control region of 86 cats in combination with 11 microsatellite loci of 149 cats. According to our microsatellite data, German wildcats are divided into two separate populations corresponding to the western and eastern distribution areas. We found no indication of a further subdivision of the eastern population. German wildcat populations are genetically distinct from domestic cats in the main, but we identified 18.4% of the whole wildcat sample as being of hybrid origin, corresponding to 4.2% of the eastern and 42.9% of the western wildcat population, and 2.7% of the domestic cat sample. The mitochondrial haplotypes form a network of three connected clusters and reveal a high level of genetic diversity, especially within the eastern population. Our findings are explained at best in terms of continuous introgression between domestic cats and wildcat populations and differing degrees of recent hybridization in the various populations. Future conservation efforts should focus on preserving the existing gene flow between the isolated distribution areas, but also on preventing the spread of hybrids and limiting the habitat alterations that lead to increased contact with domestic cats. In conclusion we discuss possible evolutionary reasons for the still traceable genetic integrity of the wildcat despite its long history of interbreeding.


See more on domestic cat introgression in wildcat


No comments:

Post a Comment

Related Posts Plugin for WordPress, Blogger...